Secure Deletion of Data from Magnetic and Solid-State Memory
Previous  Top  Next


Methods of Recovery for Data stored in Random-Access Memory
Contrary to conventional wisdom, "volatile" semiconductor memory does not entirely lose its contents when power is removed. Both static (SRAM) and dynamic (DRAM) memory retains some information on the data stored in it while power was still applied. SRAM is particularly susceptible to this problem, as storing the same data in it over a long period of time has the effect of altering the preferred power-up state to the state which was stored when power was removed. Older SRAM chips could often "remember" the previously held state for several days. In fact, it is possible to manufacture SRAM's which always have a certain state on power-up, but which can be overwritten later on - a kind of "writeable ROM".

DRAM can also "remember" the last stored state, but in a slightly different way. It isn't so much that the charge (in the sense of a voltage appearing across a capacitance) is retained by the RAM cells, but that the thin oxide which forms the storage capacitor dielectric is highly stressed by the applied field, or is not stressed by the field, so that the properties of the oxide change slightly depending on the state of the data. One thing that can cause a threshold shift in the RAM cells is ionic contamination of the cell(s) of interest, although such contamination is rarer now than it used to be because of robotic handling of the materials and because the purity of the chemicals used is greatly improved. However, even a perfect oxide is subject to having its properties changed by an applied field. When it comes to contaminants, sodium is the most common offender - it is found virtually everywhere, and is a fairly small (and therefore mobile) atom with a positive charge. In the presence of an electric field, it migrates towards the negative pole with a velocity which depends on temperature, the concentration of the sodium, the oxide quality, and the other impurities in the oxide such as dopants from the processing. If the electric field is zero and given enough time, this stress tends to dissipate eventually.

The stress on the cell is a cumulative effect, much like charging an RC circuit. If the data is applied for only a few milliseconds then there is very little "learning" of the cell, but if it is applied for hours then the cell will acquire a strong (relatively speaking) change in its threshold. The effects of the stress on the RAM cells can be measured using the built-in self test capabilities of the cells, which provide the ability to impress a weak voltage on a storage cell in order to measure its margin. Cells will show different margins depending on how much oxide stress has been present. Many DRAM's have undocumented test modes which allow some normal I/O pin to become the power supply for the RAM core when the special mode is active. These test modes are typically activated by running the RAM in a nonstandard configuration, so that a certain set of states which would not occur in a normally-functioning system has to be traversed to activate the mode. Manufacturers won't admit to such capabilities in their products because they don't want their customers using them and potentially rejecting devices which comply with their spec sheets, but have little margin beyond that.

A simple but somewhat destructive method to speed up the annihilation of stored bits in semiconductor memory is to heat it. Both DRAM's and SRAM's will lose their contents a lot more quickly at Tjunction = 140°C than they will at room temperature. Several hours at this temperature with no power applied will clear their contents sufficiently to make recovery difficult. Conversely, to extend the life of stored bits with the power removed, the temperature should be dropped below -60°C. Such cooling should lead to weeks, instead of hours or days, of data retention.